82 research outputs found

    Mars surface radiation exposure for solar maximum conditions and 1989 solar proton events

    Get PDF
    The Langley heavy-ion/nucleon transport code, HZETRN, and the high-energy nucleon transport code, BRYNTRN, are used to predict the propagation of galactic cosmic rays (GCR's) and solar flare protons through the carbon dioxide atmosphere of Mars. Particle fluences and the resulting doses are estimated on the surface of Mars for GCR's during solar maximum conditions and the Aug., Sep., and Oct. 1989 solar proton events. These results extend previously calculated surface estimates for GCR's at solar minimum conditions and the Feb. 1956, Nov. 1960, and Aug. 1972 solar proton events. Surface doses are estimated with both a low-density and a high-density carbon dioxide model of the atmosphere for altitudes of 0, 4, 8, and 12 km above the surface. A solar modulation function is incorporated to estimate the GCR dose variation between solar minimum and maximum conditions over the 11-year solar cycle. By using current Mars mission scenarios, doses to the skin, eye, and blood-forming organs are predicted for short- and long-duration stay times on the Martian surface throughout the solar cycle

    Galactic cosmic ray exposure estimates for SAGE-3 mission in polar orbit

    Get PDF
    An analysis of the effects of galactic cosmic ray (GCR) exposures on charge-coupled devices (CCDs) was performed for the SAGE-III 5-year mission in sun-synchronous orbit between 1996 and 2001. A detailed environment model used in conjunction with a geomagnetic vertical cut-off code provides the predicted 5-year fluence of GCR ions. A computerized solid model of the spacecraft was used to define the effective shield thickness distribution around the CCD detector. The particle fluences at the detector location are calculated with the Langley heavy-ion transport code, and these fluences are used in conjunction with estimated nuclear stopping powers to evaluate dosimetric quantities related to the detector degradation. A previous study analyzing effects of trapped particle and solar flare protons indicated an approximate 20 percent reduction in detector sensitivity for the mission. The galactic cosmic ray contribution was thought to be relatively small and therefore was not previously analyzed. The present study provides quantification of the GCR effects, which are found to contribute less than 1 percent of the total environment degradation

    Radiation protection for human missions to the Moon and Mars

    Get PDF
    Radiation protection assessments are performed for advanced Lunar and Mars manned missions. The Langley cosmic ray transport code and the nucleon transport code are used to quantify the transport and attenuation of galactic cosmic rays and solar proton flares through various shielding media. Galactic cosmic radiation at solar maximum and minimum, as well as various flare scenarios are considered. Propagation data for water, aluminum, liquid hydrogen, lithium hydride, lead, and lunar and Martian regolith (soil) are included. Shield thickness and shield mass estimates required to maintain incurred doses below 30 day and annual limits (as set for Space Station Freedom and used as a guide for space exploration) are determined for simple geometry transfer vehicles. On the surface of Mars, dose estimates are presented for crews with their only protection being the carbon dioxide atmosphere and for crews protected by shielding provided by Martian regolith for a candidate habitat

    Solar-flare shielding with Regolith at a lunar-base site

    Get PDF
    The Langley high energy nucleon transport computer code BRYNTRN is used to predict time-integrated radiation dose levels at the lunar surface due to high proton flux from solar flares. The study addresses the shielding requirements for candidate lunar habitat configurations necessary to protect crew members from these large and unpredictable radiation fluxes. Three solar proton events have been analyzed, and variations in radiation intensity in a shield medium due to the various primary particle energy distributions are predicted. Radiation dose predictions are made for various slab thicknesses of a lunar soil model. Results are also presented in the form of dose patterns within specific habitat configurations shielded with lunar material

    Preliminary estimates of radiation exposures for manned interplanetary missions from anomalously large solar flare events

    Get PDF
    Preliminary estimates of radiation exposures for manned interplanetary missions resulting from anomalously large solar flare events are presented. The calculations use integral particle fluences for the February 1956, November 1960, and August 1972 events as inputs into the Langley Research Center nucleon transport code BRYNTRN. This deterministic code transports primary and secondary nucleons (protons and neutrons) through any number of layers of target material of arbitrary thickness and composition. Contributions from target nucleus fragmentation and recoil are also included. Estimates of 5 cm depth doses and dose equivalents in tissue are presented behind various thicknesses of aluminum, water, and composite aluminum/water shields for each of the three solar flare events

    Reliability of equivalent sphere model in blood-forming organ dose estimation

    Get PDF
    The radiation dose equivalents to blood-forming organs (BFO's) of the astronauts at the Martian surface due to major solar flare events are calculated using the detailed body geometry of Langley and Billings. The solar flare spectra of February 1956, November 1960, and August 1972 events are employed instead of the idealized Webber form. The detailed geometry results are compared with those based on the 5-cm sphere model which was used often in the past to approximate BFO dose or dose equivalent. Larger discrepancies are found for the later two events possibly due to the lower numbers of highly penetrating protons. It is concluded that the 5-cm sphere model is not suitable for quantitative use in connection with future NASA deep-space, long-duration mission shield design studies

    MIRACAL: A mission radiation calculation program for analysis of lunar and interplanetary missions

    Get PDF
    A computational procedure and data base are developed for manned space exploration missions for which estimates are made for the energetic particle fluences encountered and the resulting dose equivalent incurred. The data base includes the following options: statistical or continuum model for ordinary solar proton events, selection of up to six large proton flare spectra, and galactic cosmic ray fluxes for elemental nuclei of charge numbers 1 through 92. The program requires an input trajectory definition information and specifications of optional parameters, which include desired spectral data and nominal shield thickness. The procedure may be implemented as an independent program or as a subroutine in trajectory codes. This code should be most useful in mission optimization and selection studies for which radiation exposure is of special importance

    Radiation exposure for manned Mars surface missions

    Get PDF
    The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection

    Estimates of galactic cosmic ray shielding requirements during solar minimum

    Get PDF
    Estimates of radiation risk from galactic cosmic rays are presented for manned interplanetary missions. The calculations use the Naval Research Laboratory cosmic ray spectrum model as input into the Langley Research Center galactic cosmic ray transport code. This transport code, which transports both heavy ions and nucleons, can be used with any number of layers of target material, consisting of up to five different arbitrary constituents per layer. Calculated galactic cosmic ray fluxes, dose and dose equivalents behind various thicknesses of aluminum, water and liquid hydrogen shielding are presented for the solar minimum period. Estimates of risk to the skin and the blood-forming organs (BFO) are made using 0-cm and 5-cm depth dose/dose equivalent values, respectively, for water. These results indicate that at least 3.5 g/sq cm (3.5 cm) of water, or 6.5 g/sq cm (2.4 cm) of aluminum, or 1.0 g/sq cm (14 cm) of liquid hydrogen shielding is required to reduce the annual exposure below the currently recommended BFO limit of 0.5 Sv. Because of large uncertainties in fragmentation parameters and the input cosmic ray spectrum, these exposure estimates may be uncertain by as much as a factor of 2 or more. The effects of these potential exposure uncertainties or shield thickness requirements are analyzed

    Comparison of dose estimates using the buildup-factor method and a Baryon transport code (BRYNTRN) with Monte Carlo results

    Get PDF
    Continuing efforts toward validating the buildup factor method and the BRYNTRN code, which use the deterministic approach in solving radiation transport problems and are the candidate engineering tools in space radiation shielding analyses, are presented. A simplified theory of proton buildup factors assuming no neutron coupling is derived to verify a previously chosen form for parameterizing the dose conversion factor that includes the secondary particle buildup effect. Estimates of dose in tissue made by the two deterministic approaches and the Monte Carlo method are intercompared for cases with various thicknesses of shields and various types of proton spectra. The results are found to be in reasonable agreement but with some overestimation by the buildup factor method when the effect of neutron production in the shield is significant. Future improvement to include neutron coupling in the buildup factor theory is suggested to alleviate this shortcoming. Impressive agreement for individual components of doses, such as those from the secondaries and heavy particle recoils, are obtained between BRYNTRN and Monte Carlo results
    corecore